Python: module cdms.cache

CDMS cache management and file movement objects

cdms.cdmsobj 0S8 tempfile
cdms.cdurllib shelve time
errno SVS urlparse

Cache

class Cache

A simple data cache

Methods defined here:
__init__(self)

clean(self)
Clean pending read notifications.

copyFile(self, fromURL, filekey, Icpath=None, userid=None, useReplica=None)
Copy the file <fromURL> into the cache. Return the result pat

For request manager transfers, lcpath is the logical collecti
<userid> is the string user ID, <useReplica> is true iff the
search the replica catalog for the actual file to transfer.

delete(self)
Delete the cache.

deleteEntry(self, filekey)
Delete a cache index entry.

get(self, filekey)
Get the path associated with <filekey>, or None if not preser

getFile(self, fromURL, filekey, naptime=5, maxtries=60, Icpath=None, userid=None, useReplica=]

1/3

Get the file with <fileURL>. If the file is in the cache, rec
If another process is transferring it into the cache, wait fc
transfer to complete. <naptime> is the number of seconds betw
retries, <maxtries> is the maximum number of retries.
Otherwise, copy it from the remote file.

<filekey> is the cache index key. A good choice is (datasetD)
where datasetDN is the distinguished name of the dataset, anc
is the name of the file within the dataset.

For request manager transfers, <lcpath> is the logical collec
<userid> is the user string ID, <useReplica> is true iff the
search the replica catalog for the actual file to transfer.

Returns the path of a file in the cache.

Note: The function does not guarantee that the file is still
by the time it returns.

put(self, filekey, path)
cache[filekey] = path

Data and other attributes defined here:

indexpath = None

copyFile(fromURL, toURL, callback=None, Icpath=None, userid=None, useReplica=1)
Copy file <fromURL> to local file <toURL>. For FTP transfers, 1if c
display a progress dialog, otherwise just print progress messages.

For request manager transfers, <lcpath> is the logical collection
<userid> is the string user ID, <useReplica> is true iff the reque
search the replica catalog for the actual file to transfer.

lock(filename)
Acquire a file-based lock with the given name.
Usage: lock(filename)
If the function returns, the lock was acquired successfully.
Note: This function is UNIX-specific.
Note: It is important to delete the lock via unlock () 1if the proce
is interrupted, otherwise subsequent locks will fail.

lockpath(filename)
Generate the pathname of a lock. Creates the directory containing
if necessary.

Usage: lockpath (filename)

2/3

unlock(filename)

Delete a file-based lock with the given name.

Usage:unlock (filename)

If the function returns, the lock was successfully deleted.
Note: This function is UNIX-specific.

useGlobusTransfer()
Specify that file transfers should

usePythonTransfer()
Specify that file transfers should

useRequestManagerTransfer()

useTTY()
Informational messages such as FTP

useWindow()
Specify that dialog windows should
gul.setProgressParent instead. See

GlobusNotSupported = 'Globus interface not supported'
LockError = 'Lock error:'

MethodNotImplemented = '"Method not yet implemented'
RequestManagerNotSupported = 'Request manager interface not supported (module reqm not
found)'

SchemeNotSupported = 'Scheme not supported: '
TimeOutError = 'Wait for read completion timed out:'

3/3

use the Globus storage API (SC-

use the Python libraries urllik

status should be sent to the te

be used if possible. Do not cal
useTTY.

	PCMDI Software Portal - Python: module cdms.cache

